summaryrefslogtreecommitdiff
path: root/bsp/drivers/fe300prci/fe300prci_driver.c
blob: 8eeaafc08146c31b2e540b9e75b65c96255c11a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// See LICENSE file for license details

#include "platform.h"

#ifdef PRCI_CTRL_ADDR
#include "fe300prci/fe300prci_driver.h"
#include <unistd.h>

#define rdmcycle(x)  {				       \
    uint32_t lo, hi, hi2;			       \
    __asm__ __volatile__ ("1:\n\t"		       \
			  "csrr %0, mcycleh\n\t"       \
			  "csrr %1, mcycle\n\t"	       \
			  "csrr %2, mcycleh\n\t"		\
			  "bne  %0, %2, 1b\n\t"			\
			  : "=r" (hi), "=r" (lo), "=r" (hi2)) ;	\
    *(x) = lo | ((uint64_t) hi << 32); 				\
  }

uint32_t PRCI_measure_mcycle_freq(uint32_t mtime_ticks, uint32_t mtime_freq)
{

  uint32_t start_mtime = CLINT_REG(CLINT_MTIME);
  uint32_t end_mtime = start_mtime + mtime_ticks + 1;

  // Make sure we won't get rollover.
  while (end_mtime < start_mtime){
    start_mtime = CLINT_REG(CLINT_MTIME);
    end_mtime = start_mtime + mtime_ticks + 1;
  }

  // Don't start measuring until mtime edge.
  uint32_t tmp = start_mtime;
  do {
    start_mtime = CLINT_REG(CLINT_MTIME);
  } while (start_mtime == tmp);
  
  uint64_t start_mcycle;
  rdmcycle(&start_mcycle);
  
  while (CLINT_REG(CLINT_MTIME) < end_mtime) ;
  
  uint64_t end_mcycle;
  rdmcycle(&end_mcycle);
  uint32_t difference = (uint32_t) (end_mcycle - start_mcycle);

  uint64_t freq = ((uint64_t) difference * mtime_freq) / mtime_ticks;
  return (uint32_t) freq & 0xFFFFFFFF;
  
}
 

void PRCI_use_hfrosc(int div, int trim)
{
  // Make sure the HFROSC is running at its default setting
  // It is OK to change this even if we are running off of it.
  
  PRCI_REG(PRCI_HFROSCCFG) = (ROSC_DIV(div) | ROSC_TRIM(trim) | ROSC_EN(1));

  while ((PRCI_REG(PRCI_HFROSCCFG) & ROSC_RDY(1)) == 0);
  
  PRCI_REG(PRCI_PLLCFG) &= ~PLL_SEL(1);
}

void PRCI_use_pll(int refsel, int bypass,
			 int r, int f, int q, int finaldiv,
			 int hfroscdiv, int hfrosctrim)
{
  // Ensure that we aren't running off the PLL before we mess with it.
  if (PRCI_REG(PRCI_PLLCFG) & PLL_SEL(1)) {
    // Make sure the HFROSC is running at its default setting
    PRCI_use_hfrosc(4, 16);
  }
  
  // Set PLL Source to be HFXOSC if desired.
  uint32_t config_value = 0;

  config_value |= PLL_REFSEL(refsel);
  
  if (bypass) {
    // Bypass
    config_value |= PLL_BYPASS(1);

    PRCI_REG(PRCI_PLLCFG) = config_value;

    // If we don't have an HFXTAL, this doesn't really matter.
    // Set our Final output divide to divide-by-1:
    PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
  } else {
  
    // To overclock, use the hfrosc
    if (hfrosctrim >= 0 && hfroscdiv >= 0) {
      PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
    }
    
    // Set DIV Settings for PLL
    
    // (Legal values of f_REF are 6-48MHz)

    // Set DIVR to divide-by-2 to get 8MHz frequency
    // (legal values of f_R are 6-12 MHz)

    config_value |= PLL_BYPASS(1);
    config_value |= PLL_R(r);

    // Set DIVF to get 512Mhz frequncy
    // There is an implied multiply-by-2, 16Mhz.
    // So need to write 32-1
    // (legal values of f_F are 384-768 MHz)
    config_value |= PLL_F(f);

    // Set DIVQ to divide-by-2 to get 256 MHz frequency
    // (legal values of f_Q are 50-400Mhz)
    config_value |= PLL_Q(q);

    // Set our Final output divide to divide-by-1:
    if (finaldiv == 1){
      PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
    } else {
      PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV(finaldiv-1));
    }

    PRCI_REG(PRCI_PLLCFG) = config_value;

    // Un-Bypass the PLL.
    PRCI_REG(PRCI_PLLCFG) &= ~PLL_BYPASS(1);

    // Wait for PLL Lock
    // Note that the Lock signal can be glitchy.
    // Need to wait 100 us
    // RTC is running at 32kHz.
    // So wait 4 ticks of RTC.
    uint32_t now = CLINT_REG(CLINT_MTIME);
    while (CLINT_REG(CLINT_MTIME) - now < 4) ;
    
    // Now it is safe to check for PLL Lock
    while ((PRCI_REG(PRCI_PLLCFG) & PLL_LOCK(1)) == 0);

  }

  // Switch over to PLL Clock source
  PRCI_REG(PRCI_PLLCFG) |= PLL_SEL(1);

  // If we're running off HFXOSC, turn off the HFROSC to
  // save power.
  if (refsel) {
    PRCI_REG(PRCI_HFROSCCFG) &= ~ROSC_EN(1);
  }
  
}

void PRCI_use_default_clocks()
{
  // Turn off the LFROSC
  AON_REG(AON_LFROSC) &= ~ROSC_EN(1);

  // Use HFROSC
  PRCI_use_hfrosc(4, 16);
}

void PRCI_use_hfxosc(uint32_t finaldiv)
{
  
  PRCI_use_pll(1, // Use HFXTAL
	       1, // Bypass = 1
	       0, // PLL settings don't matter
	       0, // PLL settings don't matter
	       0, // PLL settings don't matter
	       finaldiv,
	       -1,
	       -1);
}

// This is a generic function, which
// doesn't span the entire range of HFROSC settings.
// It only adjusts the trim, which can span a hundred MHz or so.
// This function does not check the legality of the PLL settings
// at all, and it is quite possible to configure invalid PLL settings
// this way.
// It returns the actual measured CPU frequency.

uint32_t PRCI_set_hfrosctrim_for_f_cpu(uint32_t f_cpu, PRCI_freq_target target )
{

  uint32_t hfrosctrim = 0;
  uint32_t hfroscdiv = 4;
  uint32_t prev_trim = 0;

  // In this function we use PLL settings which
  // will give us a 32x multiplier from the output
  // of the HFROSC source to the output of the
  // PLL. We first measure our HFROSC to get the
  // right trim, then finally use it as the PLL source.
  // We should really check here that the f_cpu
  // requested is something in the limit of the PLL. For
  // now that is up to the user.

  // This will undershoot for frequencies not divisible by 16.
  uint32_t desired_hfrosc_freq = (f_cpu/ 16);

  PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
  
  // Ignore the first run (for icache reasons)
  uint32_t cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);

  cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);
  uint32_t prev_freq = cpu_freq;
  
  while ((cpu_freq < desired_hfrosc_freq) && (hfrosctrim < 0x1F)){
    prev_trim = hfrosctrim;
    prev_freq = cpu_freq;
    hfrosctrim ++;
    PRCI_use_hfrosc(hfroscdiv, hfrosctrim);
    cpu_freq = PRCI_measure_mcycle_freq(3000, RTC_FREQ);
  } 

  // We couldn't go low enough
  if (prev_freq > desired_hfrosc_freq){
    PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
    cpu_freq = PRCI_measure_mcycle_freq(1000, RTC_FREQ);
    return cpu_freq;
  }
  
  // We couldn't go high enough
  if (cpu_freq < desired_hfrosc_freq){
    PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
    cpu_freq = PRCI_measure_mcycle_freq(1000, RTC_FREQ);
    return cpu_freq;
  }

  // Check for over/undershoot
  switch(target) {
  case(PRCI_FREQ_CLOSEST):
    if ((desired_hfrosc_freq - prev_freq) < (cpu_freq - desired_hfrosc_freq)) {
      PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
    } else {
      PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, hfrosctrim);
    }
    break;
  case(PRCI_FREQ_UNDERSHOOT):
    PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, prev_trim);
    break;
  default:
    PRCI_use_pll(0, 0, 1, 31, 1, 1, hfroscdiv, hfrosctrim);
  }

  cpu_freq =  PRCI_measure_mcycle_freq(1000, RTC_FREQ);
  return cpu_freq;

}

#endif