summaryrefslogtreecommitdiff
path: root/bsp/env/freedom-e300-hifive1/init.c
blob: d085f6c375e4a628796de9613570ff93567302fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include <stdint.h>
#include <unistd.h>

#include "platform.h"
#include "encoding.h"

uint32_t cpu_freq = 0;

extern int main(int argc, char** argv);

uint32_t mtime_lo(void)
{
  return *(volatile uint32_t *)(CLINT_BASE_ADDR + CLINT_MTIME);
}

uint32_t mcycle_lo(void)
{
  uint32_t t;
  asm volatile ("csrr %0, mcycle" : "=r" (t));
  return t;
}

static void use_hfrosc(int div, int trim)
{
  // Make sure the HFROSC is running at its default setting
  PRCI_REG(PRCI_HFROSCCFG) = (ROSC_DIV(div) | ROSC_TRIM(trim) | ROSC_EN(1));
  while ((PRCI_REG(PRCI_HFROSCCFG) & ROSC_RDY(1)) == 0) ;
  PRCI_REG(PRCI_PLLCFG) &= ~PLL_SEL(1);
}

static void use_pll(int refsel, int bypass, int r, int f, int q)
{
  // Ensure that we aren't running off the PLL before we mess with it.
  if (PRCI_REG(PRCI_PLLCFG) & PLL_SEL(1)) {
    // Make sure the HFROSC is running at its default setting
    use_hfrosc(4, 16);
  }

  // Set PLL Source to be HFXOSC if available.
  uint32_t config_value = 0;

  config_value |= PLL_REFSEL(refsel);

  if (bypass) {
    // Bypass
    config_value |= PLL_BYPASS(1);

    PRCI_REG(PRCI_PLLCFG) = config_value;

    // If we don't have an HFXTAL, this doesn't really matter.
    // Set our Final output divide to divide-by-1:
    PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));
  } else {
    // In case we are executing from QSPI,
    // (which is quite likely) we need to
    // set the QSPI clock divider appropriately
    // before boosting the clock frequency.

    // Div = f_sck/2
    SPI0_REG(SPI_REG_SCKDIV) = 8;

    // Set DIV Settings for PLL
    // Both HFROSC and HFXOSC are modeled as ideal
    // 16MHz sources (assuming dividers are set properly for
    // HFROSC).
    // (Legal values of f_REF are 6-48MHz)

    // Set DIVR to divide-by-2 to get 8MHz frequency
    // (legal values of f_R are 6-12 MHz)

    config_value |= PLL_BYPASS(1);
    config_value |= PLL_R(r);

    // Set DIVF to get 512Mhz frequncy
    // There is an implied multiply-by-2, 16Mhz.
    // So need to write 32-1
    // (legal values of f_F are 384-768 MHz)
    config_value |= PLL_F(f);

    // Set DIVQ to divide-by-2 to get 256 MHz frequency
    // (legal values of f_Q are 50-400Mhz)
    config_value |= PLL_Q(q);

    // Set our Final output divide to divide-by-1:
    PRCI_REG(PRCI_PLLDIV) = (PLL_FINAL_DIV_BY_1(1) | PLL_FINAL_DIV(0));

    PRCI_REG(PRCI_PLLCFG) = config_value;

    // Un-Bypass the PLL.
    PRCI_REG(PRCI_PLLCFG) &= ~PLL_BYPASS(1);

    // Wait for PLL Lock
    // Note that the Lock signal can be glitchy.
    // Need to wait 100 us
    // RTC is running at 32kHz.
    // So wait 4 ticks of RTC.
    uint32_t now = mtime_lo();
    while (mtime_lo() - now < 4) ;

    // Now it is safe to check for PLL Lock
    while ((PRCI_REG(PRCI_PLLCFG) & PLL_LOCK(1)) == 0) ;
  }

  // Switch over to PLL Clock source
  PRCI_REG(PRCI_PLLCFG) |= PLL_SEL(1);
}

static void use_default_clocks()
{
  // Turn off the LFROSC
  AON_REG(AON_LFROSC) &= ~ROSC_EN(1);

  // Use HFROSC
  use_hfrosc(4, 16);
}

void measure_cpu_freq(size_t n, size_t mtime_freq)
{
  uint32_t start_mtime = mtime_lo();
  uint32_t start_mcycle = mcycle_lo();

  while (mtime_lo() - start_mtime < n) ;

  uint32_t end_mtime = mtime_lo();
  uint32_t end_mcycle = mcycle_lo();

  cpu_freq = (end_mcycle-start_mcycle)/n*mtime_freq;
}

uint32_t get_cpu_freq()
{
  return cpu_freq;
}

static void uart_init(size_t baud_rate)
{
  GPIO_REG(GPIO_IOF_SEL) &= ~IOF0_UART0_MASK;
  GPIO_REG(GPIO_IOF_EN) |= IOF0_UART0_MASK;
  UART0_REG(UART_REG_DIV) = get_cpu_freq() / baud_rate - 1;
  UART0_REG(UART_REG_TXCTRL) |= UART_TXEN;
}



#ifdef USE_PLIC
extern void handle_m_ext_interrupt();
#endif

#ifdef USE_M_TIME
extern void handle_m_time_interrupt();
#endif

uintptr_t handle_trap(uintptr_t mcause, uintptr_t epc)
{
  if (0){
#ifdef USE_PLIC
    // External Machine-Level interrupt from PLIC
  } else if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_EXT)) {
    handle_m_ext_interrupt();
#endif
#ifdef USE_M_TIME
    // External Machine-Level interrupt from PLIC
  } else if ((mcause & MCAUSE_INT) && ((mcause & MCAUSE_CAUSE) == IRQ_M_TIMER)){
    handle_m_time_interrupt();
#endif
  }
  else {
    write(1, "trap\n", 5);
    _exit(1 + mcause);
  }
  return epc;
}


void _init()
{
  use_default_clocks();
  use_pll(0, 0, 1, 31, 1);
  measure_cpu_freq(1000, 32768);
  uart_init(115200);

  printf("core freq at %d Hz\n", get_cpu_freq());

  write_csr(mtvec, &handle_trap);

  _exit(main(0, NULL));
}