1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// See LICENSE for license details.
#include <stdio.h>
#include <stdlib.h>
#include "platform.h"
#include <string.h>
#include "plic/plic_driver.h"
#include "encoding.h"
#include <unistd.h>
#ifndef _SIFIVE_COREPLEXIP_ARTY_H
#error 'global_interrupts' demo only supported for Coreplex IP Eval Kits
#endif
// Global Instance data for the PLIC
// for use by the PLIC Driver.
plic_instance_t g_plic;
// Structures for registering different interrupt handlers
// for different parts of the application.
typedef void (*interrupt_function_ptr_t) (void);
//array of function pointers which contains the PLIC
//interrupt handlers
interrupt_function_ptr_t g_ext_interrupt_handlers[PLIC_NUM_INTERRUPTS];
//ecall countdown
uint32_t ecall_countdown;
//ecall macro used to store argument in a0
#define ECALL(arg) ({ \
register uintptr_t a0 asm ("a0") = (uintptr_t)(arg); \
asm volatile ("ecall" \
: "+r" (a0) \
: \
: "memory"); \
a0; \
})
const char * instructions_msg = " \
\n\
SIFIVE, INC.\n\
E31/E51 Coreplex IP Eval Kit 'vectored_interrupts' demo. \n\
\n\
This demo demonstrates Vectored Interrupts capabilities of\n\
the E31/E51 Coreplex. The vector table is defined in \n\
bsp/env/ventry.S \n\
Button 0 is a global external interrupt routed to the PLIC.\n\
Button 1 is a local interrupt.\n\
Every 10 seconds, an ECALL is made. \n\
\n";
void print_instructions() {
write (STDOUT_FILENO, instructions_msg, strlen(instructions_msg));
}
void set_timer() {
static uint64_t then = 0;
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
if(then != 0) {
//next timer irq is 1 second from previous
then += 1*RTC_FREQ;
} else{ //first time setting the timer
uint64_t now = *mtime;
then = now + 1*RTC_FREQ;
}
*mtimecmp = then;
set_csr(mie, MIP_MTIP);
}
/*Entry Point for Machine Timer Interrupt Handler*/
/*called from bsp/env/ventry.s */
void handle_m_time_interrupt(){
static uint32_t onoff=1;
clear_csr(mie, MIP_MTIP);
//increment ecall_countdown
ecall_countdown++;
// Set Green LED
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << GREEN_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << GREEN_LED_OFFSET)) ;
onoff=1;
}
set_timer();
//re-enable button1 irq
set_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*Synchronous Trap Handler*/
/*called from bsp/env/ventry.s */
void handle_sync_trap(uint32_t arg0) {
uint32_t exception_code = read_csr(mcause);
//check for machine mode ecall
if(exception_code == CAUSE_MACHINE_ECALL) {
//reset ecall_countdown
ecall_countdown = 0;
//ecall argument is stored in a0 prior to
//ECALL instruction.
printf("ecall from M-mode: %d\n",arg0);
//on exceptions, mepc points to the instruction
//which triggered the exception, in order to
//return to the next instruction, increment
//mepc
unsigned long epc = read_csr(mepc);
epc += 4; //return to next instruction
write_csr(mepc, epc);
} else{
printf("vUnhandled Trap:\n");
_exit(1 + read_csr(mcause));
}
}
/*Entry Point for PLIC Interrupt Handler*/
/*called from bsp/env/ventry.s */
void handle_m_external_interrupt(){
printf("In PLIC handler\n");
plic_source int_num = PLIC_claim_interrupt(&g_plic);
if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS)) {
g_ext_interrupt_handlers[int_num]();
}
else {
exit(1 + (uintptr_t) int_num);
}
PLIC_complete_interrupt(&g_plic, int_num);
}
//default empty PLIC handler
void invalid_global_isr() {
printf("Unexpected global interrupt!\n");
}
/* b0 global interrupt isr */
/*called from handle_m_external_interrupt */
void button_0_handler() {
static uint32_t onoff=1;
// Set Green LED
printf("In Button 0 handler\n");
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << BLUE_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << BLUE_LED_OFFSET)) ;
onoff=1;
}
//clear irq - interrupt pending register is write 1 to clear
GPIO_REG(GPIO_FALL_IP) |= (1<<BUTTON_0_OFFSET);
}
/*b1 local vectored irq handler */
/*called from bsp/env/ventry.s */
void handle_local_interrupt5() {
static uint32_t onoff=1;
// Set Green LED
printf("In Button 1 handler\n");
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << RED_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << RED_LED_OFFSET)) ;
onoff=1;
}
//debounce by turning off until next timer tick
clear_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*configures Button0 as a global gpio irq*/
void b0_irq_init() {
//dissable hw io function
GPIO_REG(GPIO_IOF_EN ) &= ~(1 << BUTTON_0_OFFSET);
//set to input
GPIO_REG(GPIO_INPUT_EN) |= (1<<BUTTON_0_OFFSET);
GPIO_REG(GPIO_PULLUP_EN) |= (1<<BUTTON_0_OFFSET);
//set to interrupt on falling edge
GPIO_REG(GPIO_FALL_IE) |= (1<<BUTTON_0_OFFSET);
PLIC_init(&g_plic,
PLIC_CTRL_ADDR,
PLIC_NUM_INTERRUPTS,
PLIC_NUM_PRIORITIES);
PLIC_enable_interrupt (&g_plic, INT_DEVICE_BUTTON_0);
PLIC_set_priority(&g_plic, INT_DEVICE_BUTTON_0, 2);
g_ext_interrupt_handlers[INT_DEVICE_BUTTON_0] = button_0_handler;
}
/*configures Button1 as a local interrupt*/
void b1_irq_init() {
//enable the interrupt
set_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*turn down the brightness, and configure GPIO */
void led_init() {
// Make sure people aren't blinded by LEDs connected here.
PWM0_REG(PWM_CMP0) = 0xFE;
PWM0_REG(PWM_CMP1) = 0xFF;
PWM0_REG(PWM_CMP2) = 0xFF;
PWM0_REG(PWM_CMP3) = 0xFF;
// Set up RGB LEDs for a visual.
GPIO_REG(GPIO_OUTPUT_EN) |= ((0x1<< RED_LED_OFFSET)| (0x1<< GREEN_LED_OFFSET)| (0x1<< BLUE_LED_OFFSET));
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1<< RED_LED_OFFSET) | (0x1<< GREEN_LED_OFFSET) | (0x1<< BLUE_LED_OFFSET));
}
int main(int argc, char **argv)
{
uint32_t ecall_count = 0;
//setup default global interrupt handler
for (int gisr = 0; gisr < PLIC_NUM_INTERRUPTS; gisr++){
g_ext_interrupt_handlers[PLIC_NUM_INTERRUPTS] = invalid_global_isr;
}
print_instructions();
led_init();
b0_irq_init();
b1_irq_init();
//initialize ecall_countdown
ecall_countdown = 0;
// Set up machine timer interrupt.
set_timer();
// Enable Global (PLIC) interrupts.
set_csr(mie, MIP_MEIP);
// Enable all interrupts
set_csr(mstatus, MSTATUS_MIE);
while(1){
asm volatile ("wfi");
//check if ecall_countdown is 10
if(ecall_countdown == 10) {
ECALL(ecall_count++);
}
//otherwise wfi
}
return 0;
}
|