1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
// See LICENSE for license details.
#include <stdio.h>
#include <stdlib.h>
#include "platform.h"
#include <string.h>
#include "plic/plic_driver.h"
#include "encoding.h"
#include <unistd.h>
#ifndef _SIFIVE_COREPLEXIP_ARTY_H
#error 'global_interrupts' demo only supported for Coreplex IP Eval Kits
#endif
// Global Instance data for the PLIC
// for use by the PLIC Driver.
plic_instance_t g_plic;
// Structures for registering different interrupt handlers
// for different parts of the application.
typedef void (*interrupt_function_ptr_t) (void);
//array of function pointers which contains the PLIC
//interrupt handlers
interrupt_function_ptr_t g_ext_interrupt_handlers[PLIC_NUM_INTERRUPTS];
const char * instructions_msg = " \
\n\
SIFIVE, INC.\n\
E31/E51 Coreplex IP Eval Kit 'vectored_interrupts' demo. \n\
\n\
This demo demonstrates Vectored Interrupts capabilities of\n\
the E31/E51 Coreplex. The vector table is defined in \n\
bsp/env/ventry.S \n\
Button 0 is a global external interrupt routed to the PLIC.\n\
Button 1 is a local interrupt.\n\
\n";
void print_instructions() {
write (STDOUT_FILENO, instructions_msg, strlen(instructions_msg));
}
void set_timer() {
volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME);
volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP);
uint64_t now = *mtime;
uint64_t then = now + 1*RTC_FREQ;
*mtimecmp = then;
set_csr(mie, MIP_MTIP);
}
/*Entry Point for Machine Timer Interrupt Handler*/
/*called from bsp/env/ventry.s */
void handle_m_time_interrupt(){
static uint32_t onoff=1;
clear_csr(mie, MIP_MTIP);
// Set Green LED
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << GREEN_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << GREEN_LED_OFFSET)) ;
onoff=1;
}
set_timer();
//re-enable button1 irq
set_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*Synchronous Trap Handler*/
/*called from bsp/env/ventry.s */
void handle_sync_trap(uintptr_t mcause, uintptr_t epc ) {
write(1, "vUnhandled Trap:\n", 16);
_exit(1 + mcause);
}
/*Entry Point for PLIC Interrupt Handler*/
/*called from bsp/env/ventry.s */
void handle_m_external_interrupt(){
printf("In PLIC handler\n");
plic_source int_num = PLIC_claim_interrupt(&g_plic);
if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS)) {
g_ext_interrupt_handlers[int_num]();
}
else {
exit(1 + (uintptr_t) int_num);
}
PLIC_complete_interrupt(&g_plic, int_num);
}
//default empty PLIC handler
void invalid_global_isr() {
printf("Unexpected global interrupt!\n");
}
/* b1 global interrupt isr */
/*called from handle_m_external_interrupt */
void button_0_handler() {
static uint32_t onoff=1;
// Set Green LED
printf("In Button 0 handler\n");
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << BLUE_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << BLUE_LED_OFFSET)) ;
onoff=1;
}
//clear irq - interrupt pending register is write 1 to clear
GPIO_REG(GPIO_FALL_IP) |= (1<<BUTTON_0_OFFSET);
}
/*b1 local vectored irq handler */
/*called from bsp/env/ventry.s */
void handle_local_interrupt5() {
static uint32_t onoff=1;
// Set Green LED
printf("In Button 1 handler\n");
if(onoff) {
GPIO_REG(GPIO_OUTPUT_VAL) |= (0x1 << RED_LED_OFFSET) ;
onoff=0;
}else {
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1 << RED_LED_OFFSET)) ;
onoff=1;
}
//debounce by turing off until next timer tick
clear_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*configures Button0 as a global gpio irq*/
void b0_irq_init() {
//dissable hw io function
GPIO_REG(GPIO_IOF_EN ) &= ~(1 << BUTTON_0_OFFSET);
//set to input
GPIO_REG(GPIO_INPUT_EN) |= (1<<BUTTON_0_OFFSET);
GPIO_REG(GPIO_PULLUP_EN) |= (1<<BUTTON_0_OFFSET);
//set to interrupt on falling edge
GPIO_REG(GPIO_FALL_IE) |= (1<<BUTTON_0_OFFSET);
PLIC_init(&g_plic,
PLIC_CTRL_ADDR,
PLIC_NUM_INTERRUPTS,
PLIC_NUM_PRIORITIES);
PLIC_enable_interrupt (&g_plic, INT_DEVICE_BUTTON_0);
PLIC_set_priority(&g_plic, INT_DEVICE_BUTTON_0, 2);
g_ext_interrupt_handlers[INT_DEVICE_BUTTON_0] = button_0_handler;
}
/*configures Button1 as a local interrupt*/
void b1_irq_init() {
//enable the interrupt
set_csr(mie, MIP_MLIP(LOCAL_INT_BTN_1));
}
/*turn down the brightness, and configure GPIO */
void led_init() {
// Make sure people aren't blinded by LEDs connected here.
PWM0_REG(PWM_CMP0) = 0xFE;
PWM0_REG(PWM_CMP1) = 0xFF;
PWM0_REG(PWM_CMP2) = 0xFF;
PWM0_REG(PWM_CMP3) = 0xFF;
// Set up RGB LEDs for a visual.
GPIO_REG(GPIO_OUTPUT_EN) |= ((0x1<< RED_LED_OFFSET)| (0x1<< GREEN_LED_OFFSET)| (0x1<< BLUE_LED_OFFSET));
GPIO_REG(GPIO_OUTPUT_VAL) &= ~((0x1<< RED_LED_OFFSET) | (0x1<< GREEN_LED_OFFSET) | (0x1<< BLUE_LED_OFFSET));
}
int main(int argc, char **argv)
{
//setup default global interrupt handler
for (int gisr = 0; gisr < PLIC_NUM_INTERRUPTS; gisr++){
g_ext_interrupt_handlers[PLIC_NUM_INTERRUPTS] = invalid_global_isr;
}
print_instructions();
led_init();
b0_irq_init();
b1_irq_init();
// Set up machine timer interrupt.
set_timer();
// Enable Global (PLIC) interrupts.
set_csr(mie, MIP_MEIP);
// Enable all interrupts
set_csr(mstatus, MSTATUS_MIE);
while(1){
asm volatile ("wfi");
}
return 0;
}
|